Bataan Peninsula State University

Feedback control of dynamic systems / (Record no. 10460)

MARC details
000 -LEADER
fixed length control field 11822cam a2200409 i 4500
001 - CONTROL NUMBER
control field 39371
003 - CONTROL NUMBER IDENTIFIER
control field 0000000000
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240411192920.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 140131s2015 mau s 000 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2014004059
019 ## -
-- 874734769
-- 879519529
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0133496597
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780133496598
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)869825370
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)869825370
Canceled/invalid control number (OCoLC)874734769
-- (OCoLC)879519529
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Description conventions rda
Transcribing agency DLC
Modifying agency YDX
-- BTCTA
-- YDXCP
-- OCLCF
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TJ216
Item number .F723 2015
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 629.8/3
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Franklin, Gene F.,
Relator term author.
245 10 - TITLE STATEMENT
Title Feedback control of dynamic systems /
Statement of responsibility, etc. Gene F. Franklin, Stanford University, J. David Powell, Stanford University, Abbas Emami-Naeini, SC Solutions, Inc.
250 ## - EDITION STATEMENT
Edition statement Seventh edition.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Boston :
Name of publisher, distributor, etc. Pearson,
Date of publication, distribution, etc. [2015]
300 ## - PHYSICAL DESCRIPTION
Extent xx, 860 pages :
Other physical details illustrations.
336 ## - CONTENT TYPE
Content type term text
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Source rdacarrier
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references (pages 840-847) and index
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Machine generated contents note: 1. An Overview and Brief History of Feedback Control -- A Perspective on Feedback Control -- Chapter Overview -- 1.1.A Simple Feedback System -- 1.2.A First Analysis of Feedback -- 1.3. Feedback System Fundamentals -- 1.4.A Brief History -- 1.5. An Overview of the Book -- Summary -- Review Questions -- Problems -- 2. Dynamic Models -- A Perspective on Dynamic Models -- Chapter Overview -- 2.1. Dynamics of Mechanical Systems -- 2.1.1. Translational Motion -- 2.1.2. Rotational Motion -- 2.1.3.Combined Rotation and Translation -- 2.1.4.Complex Mechanical Systems (W)** -- 2.1.5. Distributed Parameter Systems -- 2.1.6. Summary: Developing Equations of Motion for Rigid Bodies -- 2.2. Models of Electric Circuits -- 2.3. Models of Electromechanical Systems -- 2.3.1. Loudspeakers -- 2.3.2. Motors -- 2.3.3. Gears -- 2.4. Heat and Fluid-Flow Models -- 2.4.1. Heat Flow -- 2.4.2. Incompressible Fluid Flow -- 2.5. Historical Perspective -- Summary -- Review Questions. Note continued: Problems -- 3. Dynamic Response -- A Perspective on System Response -- Chapter Overview -- 3.1. Review of Laplace Transforms -- 3.1.1. Response by Convolution -- 3.1.2. Transfer Functions and Frequency Response -- 3.1.3. The L_ Laplace Transform -- 3.1.4. Properties of Laplace Transforms -- 3.1.5. Inverse Laplace Transform by Partial-Fraction Expansion -- 3.1.6. The Final Value Theorem -- 3.1.7. Using Laplace Transforms to Solve Differential Equations -- 3.1.8. Poles and Zeros -- 3.1.9. Linear System Analysis Using Matlab® -- 3.2. System Modeling Diagrams -- 3.2.1. The Block Diagram -- 3.2.2. Block-Diagram Reduction Using Matlab -- 3.2.3. Mason's Rule and the Signal Flow Graph (W) -- 3.3. Effect of Pole Locations -- 3.4. Time-Domain Specifications -- 3.4.1. Rise Time -- 3.4.2. Overshoot and Peak Time -- 3.4.3. Settling Time -- 3.5. Effects of Zeros and Additional Poles -- 3.6. Stability -- 3.6.1. Bounded Input-Bounded Output Stability -- 3.6.2. Stability of LTI Systems. Note continued: 3.6.3. Routh's Stability Criterion -- 3.7. Obtaining Models from Experimental Data: System Identification (W) -- 3.8. Amplitude and Time Scaling (W) -- 3.9. Historical Perspective -- Summary -- Review Questions -- Problems -- 4.A First Analysis of Feedback -- A Perspective on the Analysis of Feedback -- Chapter Overview -- 4.1. The Basic Equations of Control -- 4.1.1. Stability -- 4.1.2. Tracking -- 4.1.3. Regulation -- 4.1.4. Sensitivity -- 4.2. Control of Steady-State Error to Polynomial Inputs: System Type -- 4.2.1. System Type for Tracking -- 4.2.2. System Type for Regulation and Disturbance Rejection -- 4.3. The Three-Term Controller: PID Control -- 4.3.1. Proportional Control (P) -- 4.3.2. Integral Control (I) -- 4.3.3. Derivative Control (D) -- 4.3.4. Proportional Plus Integral Control (PI) -- 4.3.5. PID Control -- 4.3.6. Ziegler -- Nichols Tuning of the PID -- Controller -- 4.4. Feedforward Control by Plant Model Inversion -- 4.5. Introduction to Digital Control (W). Note continued: 4.6. Sensitivity of Time Response to Parameter Change (W) -- 4.7. Historical Perspective -- Summary -- Review Questions -- Problems -- 5. The Root-Locus Design Method -- A Perspective on the Root-Locus Design Method -- Chapter Overview -- 5.1. Root Locus of a Basic Feedback System -- 5.2. Guidelines for Determining a Root Locus -- 5.2.1. Rules for Determining a Positive (180°) -- Root Locus -- 5.2.2. Summary of the Rules for Determining a Root Locus -- 5.2.3. Selecting the Parameter Value -- 5.3. Selected Illustrative Root Loci -- 5.4. Design Using Dynamic Compensation -- 5.4.1. Design Using Lead Compensation -- 5.4.2. Design Using Lag Compensation -- 5.4.3. Design Using Notch Compensation -- 5.4.4. Analog and Digital Implementations (W) -- 5.5.A Design Example Using the Root Locus -- 5.6. Extensions of the Root-Locus Method -- 5.6.1. Rules for Plotting a Negative (0°) Root Locus -- 5.6.2. Consideration of Two Parameters -- 5.6.3. Time Delay (W). Note continued: 5.7. Historical Perspective -- Summary -- Review Questions -- Problems -- 6. The Frequency-Response Design Method -- A Perspective on the Frequency-Response Design Method -- Chapter Overview -- 6.1. Frequency Response -- 6.1.1. Bode Plot Techniques -- 6.1.2. Steady-State Errors -- 6.2. Neutral Stability -- 6.3. The Nyquist Stability Criterion -- 6.3.1. The Argument Principle -- 6.3.2. Application of The Argument Principle to Control Design -- 6.4. Stability Margins -- 6.5. Bode's Gain -- Phase Relationship -- 6.6. Closed-Loop Frequency Response -- 6.7.Compensation -- 6.7.1. PD Compensation -- 6.7.2. Lead Compensation (W) -- 6.7.3. PI Compensation -- 6.7.4. Lag Compensation -- 6.7.5. PID Compensation -- 6.7.6. Design Considerations -- 6.7.7. Specifications in Terms of the Sensitivity Function -- 6.7.8. Limitations on Design in Terms of the Sensitivity Function -- 6.8. Time Delay -- 6.8.1. Time Delay via the Nyquist Diagram (W) -- 6.9. Alternative Presentation of Data. Note continued: 6.9.1. Nichols Chart -- 6.9.2. The Inverse Nyquist Diagram (W) -- 6.10. Historical Perspective -- Summary -- Review Questions -- Problems -- 7. State-Space Design -- A Perspective on State-Space Design -- Chapter Overview -- 7.1. Advantages of State-Space -- 7.2. System Description in State-Space -- 7.3. Block Diagrams and State-Space -- 7.4. Analysis of the State Equations -- 7.4.1. Block Diagrams and Canonical Forms -- 7.4.2. Dynamic Response from the State -- Equations -- 7.5. Control-Law Design for Full-State Feedback -- 7.5.1. Finding the Control Law -- 7.5.2. Introducing the Reference Input with Full-State Feedback -- 7.6. Selection of Pole Locations for Good Design -- 7.6.1. Dominant Second-Order Poles -- 7.6.2. Symmetric Root Locus (SRL) -- 7.6.3.Comments on the Methods -- 7.7. Estimator Design -- 7.7.1. Full-Order Estimators -- 7.7.2. Reduced-Order Estimators -- 7.7.3. Estimator Pole Selection -- 7.8.Compensator Design: Combined Control Law and Estimator (W). Note continued: 7.9. Introduction of the Reference Input with the Estimator (W) -- 7.9.1. General Structure for the Reference Input -- 7.9.2. Selecting the Gain -- 7.10. Integral Control and Robust Tracking -- 7.10.1. Integral Control -- 7.10.2. Robust Tracking Control: The Error-Space Approach -- 7.10.3. Model-Following Design -- 7.10.4. The Extended Estimator -- 7.11. Loop Transfer Recovery -- 7.12. Direct Design with Rational Transfer Functions -- 7.13. Design for Systems with Pure Time Delay -- 7.14. Solution of State Equations (W) -- 7.15. Historical Perspective -- Summary -- Review Questions -- Problems -- 8. Digital Control -- A Perspective on Digital Control -- Chapter Overview -- 8.1. Digitization -- 8.2. Dynamic Analysis of Discrete Systems -- 8.2.1.z-Transform -- 8.2.2.z-Transform Inversion -- 8.2.3. Relationship Between s and z -- 8.2.4. Final Value Theorem -- 8.3. Design Using Discrete Equivalents -- 8.3.1. Tustin's Method -- 8.3.2. Zero-Order Hold (ZOH) Method. Note continued: 8.3.3. Matched Pole-Zero (MPZ) Method -- 8.3.4. Modified Matched Pole -- Zero (MMPZ)> Method -- 8.3.5.Comparison of Digital Approximation Methods -- 8.3.6. Applicability Limits of the Discrete Equivalent Design Method -- 8.4. Hardware Characteristics -- 8.4.1. Analog-to-Digital (A/D) Converters -- 8.4.2. Digital-to-Analog Converters -- 8.4.3. Anti-Alias Prefilters -- 8.4.4. The Computer -- 8.5. Sample-Rate Selection -- 8.5.1. Tracking Effectiveness -- 8.5.2. Disturbance Rejection -- 8.5.3. Effect of Anti-Alias Prefilter -- 8.5.4. Asynchronous Sampling -- 8.6. Discrete Design -- 8.6.1. Analysis Tools -- 8.6.2. Feedback Properties -- 8.6.3. Discrete Design Example -- 8.6.4. Discrete Analysis of Designs -- 8.7. Discrete State-Space Design Methods (W) -- 8.8. Historical Perspective -- Summary -- Review Questions -- Problems -- 9. Nonlinear Systems -- A Perspective on Nonlinear Systems -- Chapter Overview -- 9.1. Introduction and Motivation: Why Study Nonlinear Systems? Note continued: 9.2. Analysis by Linearization -- 9.2.1. Linearization by Small-Signal Analysis -- 9.2.2. Linearization by Nonlinear Feedback -- 9.2.3. Linearization by Inverse Nonlinearity -- 9.3. Equivalent Gain Analysis Using the Root Locus -- 9.3.1. Integrator Antiwindup -- 9.4.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Equivalent Gain Analysis Using Frequency Response: Describing Functions -- 9.4.1. Stability Analysis Using Describing Functions -- 9.5. Analysis and Design Based on Stability -- 9.5.1. The Phase Plane -- 9.5.2. Lyapunov Stability Analysis -- 9.5.3. The Circle Criterion -- 9.6. Historical Perspective -- Summary -- Review Questions -- Problems -- 10. Control System Design: Principles and Case Studies -- A Perspective on Design Principles -- Chapter Overview -- 10.1. An Outline of Control Systems -- Design -- 10.2. Design of a Satellite's Attitude Control -- 10.3. Lateral and Longitudinal Control of a Boeing 747 -- 10.3.1. Yaw Damper -- 10.3.2. Altitude-Hold Autopilot. Note continued: 10.4. Control of the Fuel-Air Ratio in an Automotive Engine -- 10.5. Control of the Read/Write Head Assembly of a Hard Disk -- 10.6. Control of RTP Systems in Semiconductor Wafer Manufacturing -- 10.7. Chemotaxis or How E. Coli Swims Away from Trouble -- 10.8. Historical Perspective -- Summary -- Review Questions -- Problems -- Appendix A Laplace Transforms -- A.1. The L_ Laplace Transform -- A.1.1. Properties of Laplace Transforms -- A.1.2. Inverse Laplace Transform by Partial-Fraction Expansion -- A.1.3. The Initial Value Theorem -- A.1.4. Final Value Theorem -- Appendix B Solutions to the Review Questions -- Appendix C Matlab Commands.
520 ## - SUMMARY, ETC.
Summary, etc. Feedback Control of Dynamic Systems covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control-including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context and with historical background information. The authors also provide case studies with close integration of MATLAB throughout.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Feedback control systems.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Emami-Naeini, Abbas,
Relator term author.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Powell, J. David,
Dates associated with a name 1938-
Relator term author.
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://drive.google.com/file/d/1y13af7slTgJE-M15Pi08zf9GEq09j7Up/view?usp=sharing">https://drive.google.com/file/d/1y13af7slTgJE-M15Pi08zf9GEq09j7Up/view?usp=sharing</a>
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Shelving location Date acquired Full call number Barcode Date last seen Price effective from Koha item type
        Main Library Main Library E-Resources 12/02/2020 629.8/3 F831 E001803 03/07/2024 03/07/2024 E-Resources
Bataan Peninsula State University

  All rights Reserved
  Bataan Peninsula State University
  © 2024

Branches :

Abucay Campus: Bangkal, Abucay, Bataan, 2114
Bagac Campus: Bagumbayan, Bagac, Bataan 2107
Balanga Campus: Don Manuel Banzon Ave., Poblacion, City of Balanga, Bataan 2100
Dinalupihan Campus: San Ramon, Dinalupihan, Bataan, 2110
Orani Campus: Bayan, Orani, Bataan, 2112
Main Campus: Capitol Compound, Tenejero, City of Balanga, Bataan 2100

Powered by Koha