Bataan Peninsula State University
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Human exposure to electromagnetic fields : from extremely low frequency (ELF) to radiofrequency / Patrick Staebler.

By: Material type: TextTextPublisher: Hoboken, NJ : ISTE Ltd/John Wiley and Sons Inc, 2017Description: 1 online resource : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781786301215
Subject(s): Online resources:
Contents:
Machine generated contents note: ch. 1 Concepts of Electromagnetic Fields -- 1.1. Concepts of fields -- 1.1.1. Introduction -- 1.1.2. Electric fields -- 1.1.3. Magnetic fields -- 1.1.4. Introduction to electromagnetic fields -- 1.2. Waves, frequencies and wavelengths -- 1.2.1. Waves -- 1.2.2. Frequencies and periods -- 1.2.3. Wavelengths -- 1.3. Propagation of electromagnetic waves -- 1.3.1. Propagation in free space -- 1.3.2. Polarization of the wave -- 1.3.3. Near field/far field -- 1.3.4. Propagation in a real environment -- 1.3.5. Summary of electromagnetic waves -- 1.4. Type of radiation -- 1.4.1. Ionizing radiations -- 1.4.2. Non-ionizing radiations -- 1.4.3. Electromagnetic spectrum -- 1.4.4. Frequency bands -- 1.4.5. Area of exposure to electromagnetic fields -- 1.4.6. Summary of electromagnetic radiations -- ch. 2 Sources of Electromagnetic Fields -- 2.1. Natural fields -- 2.1.1. Electric fields -- 2.1.2. Magnetic fields -- 2.1.3. Electromagnetic fields -- 2.2. Artificial fields -- 2.2.1. Static and quasi-static fields -- 2.2.2. Low-frequency fields -- 2.2.3. HF fields -- 2.2.4. Summary of sources -- ch. 3 Biophysical Mechanisms -- 3.1. Interactions with matter -- 3.1.1. Matter exposed to an electric field -- 3.1.2. Matter exposed to a magnetic field -- 3.1.3. Summary of matter -- 3.2. Interaction with biological tissues -- 3.2.1. Electrical characteristics of biological tissues -- 3.2.2. Summary of biological tissues -- 3.2.3. Penetration of fields in biological tissues -- 3.2.4. Wave absorption and specific absorption rate -- 3.2.5. Summary of field absorption -- 3.3. Coupling with the human body -- 3.3.1. Low-frequency electric field coupling -- 3.3.2. Low-frequency magnetic field coupling -- 3.3.3. Electromagnetic field coupling -- 3.3.4. Summary of coupling mechanisms -- ch. 4 Biological Effects of Electromagnetic Fields -- 4.1. Direct effects -- 4.1.1. Direct effects of low-frequency fields -- 4.1.2. Direct effects of static magnetic fields (> I Hz) -- 4.1.3. Direct effects at frequencies between 100 kHz and 300 GHz -- 4.1.4. Summary of direct biological effects -- 4.1.5. Long-term effects of electromagnetic fields -- 4.2. Indirect effects -- 4.2.1. General -- 4.2.2. Indirect effects caused by contact currents -- 4.2.3. Indirect effects caused by static magnetic fields -- ch. 5 Exposure Limits for Electromagnetic Fields -- 5.1. General considerations -- 5.1.1. Recommendation 1999/519/EC -- 5.1.2. Directive 2013/35/EU -- 5.2. Low-frequency limits for direct effects -- 5.2.1. Basic restrictions, ELVs at low frequencies -- 5.2.2. Reference levels or action levels at low frequencies -- 5.3. Limits for magnetic fields <1 Hz for direct effects -- 5.3.1. Basic restrictions for static magnetic fields -- 5.3.2. Basic restrictions for quasi-static magnetic fields -- 5.3.3. Reference levels for static magnetic fields -- 5.4. High frequency limits for direct effects -- 5.4.1. High-frequency basic restrictions or ELVs -- 5.4.2. High-frequency reference levels and action values -- 5.4.3. Limits for induced currents -- 5.4.4. Summary of limits for high frequencies -- 5.5. Limits for indirect effects -- 5.5.1. Limits for contact currents -- 5.5.2. Limits for electric fields, indirect effects -- 5.5.3. Limits for static magnetic fields, indirect effects -- 5.6. Summary of exposure limits -- 5.7. People at particular risk -- 5.7.1. People with medical devices -- 5.7.2. Active medical devices -- 5.7.3. Passive medical devices -- 5.7.4. Limits for active implants -- 5.7.5. Pregnant women -- ch. 6 Exposure Indices -- 6.1. General introduction -- 6.2. Signals and definitions -- 6.2.1. Sinusoidal signal -- 6.2.2. Complex signal -- 6.2.3. rms value of a complex signal (example) -- 6.3. Introduction to exposure indices -- 6.4. Exposure Index for high-frequency fields -- 6.4.1. Exposure to a single frequency greater than 100 kHz -- 6.4.2. Exposure to multiple frequencies -- 6.5. Exposure Index for low-frequency fields -- 6.5.1. Exposure to a low-frequency sinusoidal signal -- 6.5.2. Exposure to a signal of complex form -- 6.5.3. Comparison of weighted peak techniques -- 6.6. EIs: contact currents and induced currents -- 6.7. Summary of exposure indices -- ch. 7 Applications of Exposure Indices -- 7.1. Introduction -- 7.2. Theoretical signals -- 7.2.1. Example 1: two incoherent sinusoidal signals with similar frequencies -- 7.2.2. Example 2: signal made up of two coherent sinusoidal signals (influence of the phase) -- 7.2.3. Example 3: signal made up of two sinusoidal signals with very different frequencies -- 7.2.4. Example 4: burst -- 7.2.5. Example 5: "chopped" sinusoidal signal -- 7.2.6. Example 6: square signal -- 7.3. Real signals -- 7.3.1. Example 7: hand-held electric drill -- 7.3.2. Example 8: welding gun -- 7.3.3. Example 9: transcranial stimulation device -- 7.4. Conclusion on the Index Calculation Examples -- ch. 8 Exposure Assessment -- 8.1. Introduction -- 8.1.1. Theoretical approach -- 8.1.2. Numerical approach -- 8.1.3. Metrological approach -- 8.2. Measurement: general -- 8.2.1. Process -- 8.2.2. Measuring device requirements -- 8.3. Measuring low-frequency fields -- 8.3.1. General -- 8.3.2. Measuring low-frequency magnetic fields -- 8.3.3. Measuring a static magnetic field -- 8.3.4. Measuring low-frequency electric fields -- 8.4. Measuring high-frequency electromagnetic fields -- 8.4.1. General -- 8.4.2. Measuring sensors for electromagnetic fields -- 8.4.3. Measuring device for high-frequency electromagnetic fields -- 8.4.4. Measuring high-frequency electromagnetic fields -- 8.4.5. Calibration of the measuring chain for electromagnetic fields -- 8.4.6. Sources of uncertainty in measurements of HF electromagnetic fields -- 8.5. Measuring the contact current and induced current -- 8.5.1. Measuring the contact current (indirect effect) -- 8.5.2. Measuring an induced current (direct effect) -- 8.6. Introduction to dosimetry -- 8.6.1. Definition -- 8.6.2. Experimental dosimetry -- 8.6.3. Theoretical dosimetry -- 8.6.4. Summary of dosimetry -- ch. 9 Implementation of Directive 2013/35/EU -- 9.1. Context of the directive -- 9.1.1. Introduction -- 9.1.2. EMF directive development -- 9.2. Implementation of the directive -- 9.2.1. Introduction -- 9.2.2. Preliminary phase -- 9.2.3. Risk assessment -- 9.2.4. Risk prevention -- 9.2.5. Other activities.
Summary: Everyone, whether they like it or not, is exposed to electromagnetic fields, most of the time, at very low levels. In this case, they are inconsequential, but they can cause adverse health effects when they become intense enough. This topic is complex and sensitive. Covering frequencies from 0 Hz to 300 GHz, 'Human Exposure to Electromagnetic Fields' provides an overview of this vast topic. After a reminder of the concepts of electromagnetic fields, the author presents some examples of sources of radiation in daily life and in the industrial or medical sectors.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Includes bibliographical references and index.

Machine generated contents note: ch. 1 Concepts of Electromagnetic Fields -- 1.1. Concepts of fields -- 1.1.1. Introduction -- 1.1.2. Electric fields -- 1.1.3. Magnetic fields -- 1.1.4. Introduction to electromagnetic fields -- 1.2. Waves, frequencies and wavelengths -- 1.2.1. Waves -- 1.2.2. Frequencies and periods -- 1.2.3. Wavelengths -- 1.3. Propagation of electromagnetic waves -- 1.3.1. Propagation in free space -- 1.3.2. Polarization of the wave -- 1.3.3. Near field/far field -- 1.3.4. Propagation in a real environment -- 1.3.5. Summary of electromagnetic waves -- 1.4. Type of radiation -- 1.4.1. Ionizing radiations -- 1.4.2. Non-ionizing radiations -- 1.4.3. Electromagnetic spectrum -- 1.4.4. Frequency bands -- 1.4.5. Area of exposure to electromagnetic fields -- 1.4.6. Summary of electromagnetic radiations -- ch. 2 Sources of Electromagnetic Fields -- 2.1. Natural fields -- 2.1.1. Electric fields -- 2.1.2. Magnetic fields -- 2.1.3. Electromagnetic fields -- 2.2. Artificial fields -- 2.2.1. Static and quasi-static fields -- 2.2.2. Low-frequency fields -- 2.2.3. HF fields -- 2.2.4. Summary of sources -- ch. 3 Biophysical Mechanisms -- 3.1. Interactions with matter -- 3.1.1. Matter exposed to an electric field -- 3.1.2. Matter exposed to a magnetic field -- 3.1.3. Summary of matter -- 3.2. Interaction with biological tissues -- 3.2.1. Electrical characteristics of biological tissues -- 3.2.2. Summary of biological tissues -- 3.2.3. Penetration of fields in biological tissues -- 3.2.4. Wave absorption and specific absorption rate -- 3.2.5. Summary of field absorption -- 3.3. Coupling with the human body -- 3.3.1. Low-frequency electric field coupling -- 3.3.2. Low-frequency magnetic field coupling -- 3.3.3. Electromagnetic field coupling -- 3.3.4. Summary of coupling mechanisms -- ch. 4 Biological Effects of Electromagnetic Fields -- 4.1. Direct effects -- 4.1.1. Direct effects of low-frequency fields -- 4.1.2. Direct effects of static magnetic fields (> I Hz) -- 4.1.3. Direct effects at frequencies between 100 kHz and 300 GHz -- 4.1.4. Summary of direct biological effects -- 4.1.5. Long-term effects of electromagnetic fields -- 4.2. Indirect effects -- 4.2.1. General -- 4.2.2. Indirect effects caused by contact currents -- 4.2.3. Indirect effects caused by static magnetic fields -- ch. 5 Exposure Limits for Electromagnetic Fields -- 5.1. General considerations -- 5.1.1. Recommendation 1999/519/EC -- 5.1.2. Directive 2013/35/EU -- 5.2. Low-frequency limits for direct effects -- 5.2.1. Basic restrictions, ELVs at low frequencies -- 5.2.2. Reference levels or action levels at low frequencies -- 5.3. Limits for magnetic fields <1 Hz for direct effects -- 5.3.1. Basic restrictions for static magnetic fields -- 5.3.2. Basic restrictions for quasi-static magnetic fields -- 5.3.3. Reference levels for static magnetic fields -- 5.4. High frequency limits for direct effects -- 5.4.1. High-frequency basic restrictions or ELVs -- 5.4.2. High-frequency reference levels and action values -- 5.4.3. Limits for induced currents -- 5.4.4. Summary of limits for high frequencies -- 5.5. Limits for indirect effects -- 5.5.1. Limits for contact currents -- 5.5.2. Limits for electric fields, indirect effects -- 5.5.3. Limits for static magnetic fields, indirect effects -- 5.6. Summary of exposure limits -- 5.7. People at particular risk -- 5.7.1. People with medical devices -- 5.7.2. Active medical devices -- 5.7.3. Passive medical devices -- 5.7.4. Limits for active implants -- 5.7.5. Pregnant women -- ch. 6 Exposure Indices -- 6.1. General introduction -- 6.2. Signals and definitions -- 6.2.1. Sinusoidal signal -- 6.2.2. Complex signal -- 6.2.3. rms value of a complex signal (example) -- 6.3. Introduction to exposure indices -- 6.4. Exposure Index for high-frequency fields -- 6.4.1. Exposure to a single frequency greater than 100 kHz -- 6.4.2. Exposure to multiple frequencies -- 6.5. Exposure Index for low-frequency fields -- 6.5.1. Exposure to a low-frequency sinusoidal signal -- 6.5.2. Exposure to a signal of complex form -- 6.5.3. Comparison of weighted peak techniques -- 6.6. EIs: contact currents and induced currents -- 6.7. Summary of exposure indices -- ch. 7 Applications of Exposure Indices -- 7.1. Introduction -- 7.2. Theoretical signals -- 7.2.1. Example 1: two incoherent sinusoidal signals with similar frequencies -- 7.2.2. Example 2: signal made up of two coherent sinusoidal signals (influence of the phase) -- 7.2.3. Example 3: signal made up of two sinusoidal signals with very different frequencies -- 7.2.4. Example 4: burst -- 7.2.5. Example 5: "chopped" sinusoidal signal -- 7.2.6. Example 6: square signal -- 7.3. Real signals -- 7.3.1. Example 7: hand-held electric drill -- 7.3.2. Example 8: welding gun -- 7.3.3. Example 9: transcranial stimulation device -- 7.4. Conclusion on the Index Calculation Examples -- ch. 8 Exposure Assessment -- 8.1. Introduction -- 8.1.1. Theoretical approach -- 8.1.2. Numerical approach -- 8.1.3. Metrological approach -- 8.2. Measurement: general -- 8.2.1. Process -- 8.2.2. Measuring device requirements -- 8.3. Measuring low-frequency fields -- 8.3.1. General -- 8.3.2. Measuring low-frequency magnetic fields -- 8.3.3. Measuring a static magnetic field -- 8.3.4. Measuring low-frequency electric fields -- 8.4. Measuring high-frequency electromagnetic fields -- 8.4.1. General -- 8.4.2. Measuring sensors for electromagnetic fields -- 8.4.3. Measuring device for high-frequency electromagnetic fields -- 8.4.4. Measuring high-frequency electromagnetic fields -- 8.4.5. Calibration of the measuring chain for electromagnetic fields -- 8.4.6. Sources of uncertainty in measurements of HF electromagnetic fields -- 8.5. Measuring the contact current and induced current -- 8.5.1. Measuring the contact current (indirect effect) -- 8.5.2. Measuring an induced current (direct effect) -- 8.6. Introduction to dosimetry -- 8.6.1. Definition -- 8.6.2. Experimental dosimetry -- 8.6.3. Theoretical dosimetry -- 8.6.4. Summary of dosimetry -- ch. 9 Implementation of Directive 2013/35/EU -- 9.1. Context of the directive -- 9.1.1. Introduction -- 9.1.2. EMF directive development -- 9.2. Implementation of the directive -- 9.2.1. Introduction -- 9.2.2. Preliminary phase -- 9.2.3. Risk assessment -- 9.2.4. Risk prevention -- 9.2.5. Other activities.

Everyone, whether they like it or not, is exposed to electromagnetic fields, most of the time, at very low levels. In this case, they are inconsequential, but they can cause adverse health effects when they become intense enough. This topic is complex and sensitive. Covering frequencies from 0 Hz to 300 GHz, 'Human Exposure to Electromagnetic Fields' provides an overview of this vast topic. After a reminder of the concepts of electromagnetic fields, the author presents some examples of sources of radiation in daily life and in the industrial or medical sectors.

There are no comments on this title.

to post a comment.
Bataan Peninsula State University

  All rights Reserved
  Bataan Peninsula State University
  © 2024

Branches :

Abucay Campus: Bangkal, Abucay, Bataan, 2114
Bagac Campus: Bagumbayan, Bagac, Bataan 2107
Balanga Campus: Don Manuel Banzon Ave., Poblacion, City of Balanga, Bataan 2100
Dinalupihan Campus: San Ramon, Dinalupihan, Bataan, 2110
Orani Campus: Bayan, Orani, Bataan, 2112
Main Campus: Capitol Compound, Tenejero, City of Balanga, Bataan 2100

Powered by Koha