Bataan Peninsula State University
Amazon cover image
Image from Amazon.com
Image from Google Jackets

Feedback control of dynamic systems / Gene F. Franklin, Stanford University, J. David Powell, Stanford University, Abbas Emami-Naeini, SC Solutions, Inc.

By: Contributor(s): Material type: TextTextPublication details: Boston : Pearson, [2015]Edition: Seventh editionDescription: xx, 860 pages : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 0133496597
  • 9780133496598
Subject(s): DDC classification:
  • 629.8/3 23
LOC classification:
  • TJ216 .F723 2015
Online resources:
Contents:
Machine generated contents note: 1. An Overview and Brief History of Feedback Control -- A Perspective on Feedback Control -- Chapter Overview -- 1.1.A Simple Feedback System -- 1.2.A First Analysis of Feedback -- 1.3. Feedback System Fundamentals -- 1.4.A Brief History -- 1.5. An Overview of the Book -- Summary -- Review Questions -- Problems -- 2. Dynamic Models -- A Perspective on Dynamic Models -- Chapter Overview -- 2.1. Dynamics of Mechanical Systems -- 2.1.1. Translational Motion -- 2.1.2. Rotational Motion -- 2.1.3.Combined Rotation and Translation -- 2.1.4.Complex Mechanical Systems (W)** -- 2.1.5. Distributed Parameter Systems -- 2.1.6. Summary: Developing Equations of Motion for Rigid Bodies -- 2.2. Models of Electric Circuits -- 2.3. Models of Electromechanical Systems -- 2.3.1. Loudspeakers -- 2.3.2. Motors -- 2.3.3. Gears -- 2.4. Heat and Fluid-Flow Models -- 2.4.1. Heat Flow -- 2.4.2. Incompressible Fluid Flow -- 2.5. Historical Perspective -- Summary -- Review Questions. Note continued: Problems -- 3. Dynamic Response -- A Perspective on System Response -- Chapter Overview -- 3.1. Review of Laplace Transforms -- 3.1.1. Response by Convolution -- 3.1.2. Transfer Functions and Frequency Response -- 3.1.3. The L_ Laplace Transform -- 3.1.4. Properties of Laplace Transforms -- 3.1.5. Inverse Laplace Transform by Partial-Fraction Expansion -- 3.1.6. The Final Value Theorem -- 3.1.7. Using Laplace Transforms to Solve Differential Equations -- 3.1.8. Poles and Zeros -- 3.1.9. Linear System Analysis Using Matlab® -- 3.2. System Modeling Diagrams -- 3.2.1. The Block Diagram -- 3.2.2. Block-Diagram Reduction Using Matlab -- 3.2.3. Mason's Rule and the Signal Flow Graph (W) -- 3.3. Effect of Pole Locations -- 3.4. Time-Domain Specifications -- 3.4.1. Rise Time -- 3.4.2. Overshoot and Peak Time -- 3.4.3. Settling Time -- 3.5. Effects of Zeros and Additional Poles -- 3.6. Stability -- 3.6.1. Bounded Input-Bounded Output Stability -- 3.6.2. Stability of LTI Systems. Note continued: 3.6.3. Routh's Stability Criterion -- 3.7. Obtaining Models from Experimental Data: System Identification (W) -- 3.8. Amplitude and Time Scaling (W) -- 3.9. Historical Perspective -- Summary -- Review Questions -- Problems -- 4.A First Analysis of Feedback -- A Perspective on the Analysis of Feedback -- Chapter Overview -- 4.1. The Basic Equations of Control -- 4.1.1. Stability -- 4.1.2. Tracking -- 4.1.3. Regulation -- 4.1.4. Sensitivity -- 4.2. Control of Steady-State Error to Polynomial Inputs: System Type -- 4.2.1. System Type for Tracking -- 4.2.2. System Type for Regulation and Disturbance Rejection -- 4.3. The Three-Term Controller: PID Control -- 4.3.1. Proportional Control (P) -- 4.3.2. Integral Control (I) -- 4.3.3. Derivative Control (D) -- 4.3.4. Proportional Plus Integral Control (PI) -- 4.3.5. PID Control -- 4.3.6. Ziegler -- Nichols Tuning of the PID -- Controller -- 4.4. Feedforward Control by Plant Model Inversion -- 4.5. Introduction to Digital Control (W). Note continued: 4.6. Sensitivity of Time Response to Parameter Change (W) -- 4.7. Historical Perspective -- Summary -- Review Questions -- Problems -- 5. The Root-Locus Design Method -- A Perspective on the Root-Locus Design Method -- Chapter Overview -- 5.1. Root Locus of a Basic Feedback System -- 5.2. Guidelines for Determining a Root Locus -- 5.2.1. Rules for Determining a Positive (180°) -- Root Locus -- 5.2.2. Summary of the Rules for Determining a Root Locus -- 5.2.3. Selecting the Parameter Value -- 5.3. Selected Illustrative Root Loci -- 5.4. Design Using Dynamic Compensation -- 5.4.1. Design Using Lead Compensation -- 5.4.2. Design Using Lag Compensation -- 5.4.3. Design Using Notch Compensation -- 5.4.4. Analog and Digital Implementations (W) -- 5.5.A Design Example Using the Root Locus -- 5.6. Extensions of the Root-Locus Method -- 5.6.1. Rules for Plotting a Negative (0°) Root Locus -- 5.6.2. Consideration of Two Parameters -- 5.6.3. Time Delay (W). Note continued: 5.7. Historical Perspective -- Summary -- Review Questions -- Problems -- 6. The Frequency-Response Design Method -- A Perspective on the Frequency-Response Design Method -- Chapter Overview -- 6.1. Frequency Response -- 6.1.1. Bode Plot Techniques -- 6.1.2. Steady-State Errors -- 6.2. Neutral Stability -- 6.3. The Nyquist Stability Criterion -- 6.3.1. The Argument Principle -- 6.3.2. Application of The Argument Principle to Control Design -- 6.4. Stability Margins -- 6.5. Bode's Gain -- Phase Relationship -- 6.6. Closed-Loop Frequency Response -- 6.7.Compensation -- 6.7.1. PD Compensation -- 6.7.2. Lead Compensation (W) -- 6.7.3. PI Compensation -- 6.7.4. Lag Compensation -- 6.7.5. PID Compensation -- 6.7.6. Design Considerations -- 6.7.7. Specifications in Terms of the Sensitivity Function -- 6.7.8. Limitations on Design in Terms of the Sensitivity Function -- 6.8. Time Delay -- 6.8.1. Time Delay via the Nyquist Diagram (W) -- 6.9. Alternative Presentation of Data. Note continued: 6.9.1. Nichols Chart -- 6.9.2. The Inverse Nyquist Diagram (W) -- 6.10. Historical Perspective -- Summary -- Review Questions -- Problems -- 7. State-Space Design -- A Perspective on State-Space Design -- Chapter Overview -- 7.1. Advantages of State-Space -- 7.2. System Description in State-Space -- 7.3. Block Diagrams and State-Space -- 7.4. Analysis of the State Equations -- 7.4.1. Block Diagrams and Canonical Forms -- 7.4.2. Dynamic Response from the State -- Equations -- 7.5. Control-Law Design for Full-State Feedback -- 7.5.1. Finding the Control Law -- 7.5.2. Introducing the Reference Input with Full-State Feedback -- 7.6. Selection of Pole Locations for Good Design -- 7.6.1. Dominant Second-Order Poles -- 7.6.2. Symmetric Root Locus (SRL) -- 7.6.3.Comments on the Methods -- 7.7. Estimator Design -- 7.7.1. Full-Order Estimators -- 7.7.2. Reduced-Order Estimators -- 7.7.3. Estimator Pole Selection -- 7.8.Compensator Design: Combined Control Law and Estimator (W). Note continued: 7.9. Introduction of the Reference Input with the Estimator (W) -- 7.9.1. General Structure for the Reference Input -- 7.9.2. Selecting the Gain -- 7.10. Integral Control and Robust Tracking -- 7.10.1. Integral Control -- 7.10.2. Robust Tracking Control: The Error-Space Approach -- 7.10.3. Model-Following Design -- 7.10.4. The Extended Estimator -- 7.11. Loop Transfer Recovery -- 7.12. Direct Design with Rational Transfer Functions -- 7.13. Design for Systems with Pure Time Delay -- 7.14. Solution of State Equations (W) -- 7.15. Historical Perspective -- Summary -- Review Questions -- Problems -- 8. Digital Control -- A Perspective on Digital Control -- Chapter Overview -- 8.1. Digitization -- 8.2. Dynamic Analysis of Discrete Systems -- 8.2.1.z-Transform -- 8.2.2.z-Transform Inversion -- 8.2.3. Relationship Between s and z -- 8.2.4. Final Value Theorem -- 8.3. Design Using Discrete Equivalents -- 8.3.1. Tustin's Method -- 8.3.2. Zero-Order Hold (ZOH) Method. Note continued: 8.3.3. Matched Pole-Zero (MPZ) Method -- 8.3.4. Modified Matched Pole -- Zero (MMPZ)> Method -- 8.3.5.Comparison of Digital Approximation Methods -- 8.3.6. Applicability Limits of the Discrete Equivalent Design Method -- 8.4. Hardware Characteristics -- 8.4.1. Analog-to-Digital (A/D) Converters -- 8.4.2. Digital-to-Analog Converters -- 8.4.3. Anti-Alias Prefilters -- 8.4.4. The Computer -- 8.5. Sample-Rate Selection -- 8.5.1. Tracking Effectiveness -- 8.5.2. Disturbance Rejection -- 8.5.3. Effect of Anti-Alias Prefilter -- 8.5.4. Asynchronous Sampling -- 8.6. Discrete Design -- 8.6.1. Analysis Tools -- 8.6.2. Feedback Properties -- 8.6.3. Discrete Design Example -- 8.6.4. Discrete Analysis of Designs -- 8.7. Discrete State-Space Design Methods (W) -- 8.8. Historical Perspective -- Summary -- Review Questions -- Problems -- 9. Nonlinear Systems -- A Perspective on Nonlinear Systems -- Chapter Overview -- 9.1. Introduction and Motivation: Why Study Nonlinear Systems? Note continued: 9.2. Analysis by Linearization -- 9.2.1. Linearization by Small-Signal Analysis -- 9.2.2. Linearization by Nonlinear Feedback -- 9.2.3. Linearization by Inverse Nonlinearity -- 9.3. Equivalent Gain Analysis Using the Root Locus -- 9.3.1. Integrator Antiwindup -- 9.4.
Equivalent Gain Analysis Using Frequency Response: Describing Functions -- 9.4.1. Stability Analysis Using Describing Functions -- 9.5. Analysis and Design Based on Stability -- 9.5.1. The Phase Plane -- 9.5.2. Lyapunov Stability Analysis -- 9.5.3. The Circle Criterion -- 9.6. Historical Perspective -- Summary -- Review Questions -- Problems -- 10. Control System Design: Principles and Case Studies -- A Perspective on Design Principles -- Chapter Overview -- 10.1. An Outline of Control Systems -- Design -- 10.2. Design of a Satellite's Attitude Control -- 10.3. Lateral and Longitudinal Control of a Boeing 747 -- 10.3.1. Yaw Damper -- 10.3.2. Altitude-Hold Autopilot. Note continued: 10.4. Control of the Fuel-Air Ratio in an Automotive Engine -- 10.5. Control of the Read/Write Head Assembly of a Hard Disk -- 10.6. Control of RTP Systems in Semiconductor Wafer Manufacturing -- 10.7. Chemotaxis or How E. Coli Swims Away from Trouble -- 10.8. Historical Perspective -- Summary -- Review Questions -- Problems -- Appendix A Laplace Transforms -- A.1. The L_ Laplace Transform -- A.1.1. Properties of Laplace Transforms -- A.1.2. Inverse Laplace Transform by Partial-Fraction Expansion -- A.1.3. The Initial Value Theorem -- A.1.4. Final Value Theorem -- Appendix B Solutions to the Review Questions -- Appendix C Matlab Commands.
Summary: Feedback Control of Dynamic Systems covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control-including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context and with historical background information. The authors also provide case studies with close integration of MATLAB throughout.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Resources Main Library E-Resources 629.8/3 F831 (Browse shelf(Opens below)) Available E001803

Includes bibliographical references (pages 840-847) and index

Machine generated contents note: 1. An Overview and Brief History of Feedback Control -- A Perspective on Feedback Control -- Chapter Overview -- 1.1.A Simple Feedback System -- 1.2.A First Analysis of Feedback -- 1.3. Feedback System Fundamentals -- 1.4.A Brief History -- 1.5. An Overview of the Book -- Summary -- Review Questions -- Problems -- 2. Dynamic Models -- A Perspective on Dynamic Models -- Chapter Overview -- 2.1. Dynamics of Mechanical Systems -- 2.1.1. Translational Motion -- 2.1.2. Rotational Motion -- 2.1.3.Combined Rotation and Translation -- 2.1.4.Complex Mechanical Systems (W)** -- 2.1.5. Distributed Parameter Systems -- 2.1.6. Summary: Developing Equations of Motion for Rigid Bodies -- 2.2. Models of Electric Circuits -- 2.3. Models of Electromechanical Systems -- 2.3.1. Loudspeakers -- 2.3.2. Motors -- 2.3.3. Gears -- 2.4. Heat and Fluid-Flow Models -- 2.4.1. Heat Flow -- 2.4.2. Incompressible Fluid Flow -- 2.5. Historical Perspective -- Summary -- Review Questions. Note continued: Problems -- 3. Dynamic Response -- A Perspective on System Response -- Chapter Overview -- 3.1. Review of Laplace Transforms -- 3.1.1. Response by Convolution -- 3.1.2. Transfer Functions and Frequency Response -- 3.1.3. The L_ Laplace Transform -- 3.1.4. Properties of Laplace Transforms -- 3.1.5. Inverse Laplace Transform by Partial-Fraction Expansion -- 3.1.6. The Final Value Theorem -- 3.1.7. Using Laplace Transforms to Solve Differential Equations -- 3.1.8. Poles and Zeros -- 3.1.9. Linear System Analysis Using Matlab® -- 3.2. System Modeling Diagrams -- 3.2.1. The Block Diagram -- 3.2.2. Block-Diagram Reduction Using Matlab -- 3.2.3. Mason's Rule and the Signal Flow Graph (W) -- 3.3. Effect of Pole Locations -- 3.4. Time-Domain Specifications -- 3.4.1. Rise Time -- 3.4.2. Overshoot and Peak Time -- 3.4.3. Settling Time -- 3.5. Effects of Zeros and Additional Poles -- 3.6. Stability -- 3.6.1. Bounded Input-Bounded Output Stability -- 3.6.2. Stability of LTI Systems. Note continued: 3.6.3. Routh's Stability Criterion -- 3.7. Obtaining Models from Experimental Data: System Identification (W) -- 3.8. Amplitude and Time Scaling (W) -- 3.9. Historical Perspective -- Summary -- Review Questions -- Problems -- 4.A First Analysis of Feedback -- A Perspective on the Analysis of Feedback -- Chapter Overview -- 4.1. The Basic Equations of Control -- 4.1.1. Stability -- 4.1.2. Tracking -- 4.1.3. Regulation -- 4.1.4. Sensitivity -- 4.2. Control of Steady-State Error to Polynomial Inputs: System Type -- 4.2.1. System Type for Tracking -- 4.2.2. System Type for Regulation and Disturbance Rejection -- 4.3. The Three-Term Controller: PID Control -- 4.3.1. Proportional Control (P) -- 4.3.2. Integral Control (I) -- 4.3.3. Derivative Control (D) -- 4.3.4. Proportional Plus Integral Control (PI) -- 4.3.5. PID Control -- 4.3.6. Ziegler -- Nichols Tuning of the PID -- Controller -- 4.4. Feedforward Control by Plant Model Inversion -- 4.5. Introduction to Digital Control (W). Note continued: 4.6. Sensitivity of Time Response to Parameter Change (W) -- 4.7. Historical Perspective -- Summary -- Review Questions -- Problems -- 5. The Root-Locus Design Method -- A Perspective on the Root-Locus Design Method -- Chapter Overview -- 5.1. Root Locus of a Basic Feedback System -- 5.2. Guidelines for Determining a Root Locus -- 5.2.1. Rules for Determining a Positive (180°) -- Root Locus -- 5.2.2. Summary of the Rules for Determining a Root Locus -- 5.2.3. Selecting the Parameter Value -- 5.3. Selected Illustrative Root Loci -- 5.4. Design Using Dynamic Compensation -- 5.4.1. Design Using Lead Compensation -- 5.4.2. Design Using Lag Compensation -- 5.4.3. Design Using Notch Compensation -- 5.4.4. Analog and Digital Implementations (W) -- 5.5.A Design Example Using the Root Locus -- 5.6. Extensions of the Root-Locus Method -- 5.6.1. Rules for Plotting a Negative (0°) Root Locus -- 5.6.2. Consideration of Two Parameters -- 5.6.3. Time Delay (W). Note continued: 5.7. Historical Perspective -- Summary -- Review Questions -- Problems -- 6. The Frequency-Response Design Method -- A Perspective on the Frequency-Response Design Method -- Chapter Overview -- 6.1. Frequency Response -- 6.1.1. Bode Plot Techniques -- 6.1.2. Steady-State Errors -- 6.2. Neutral Stability -- 6.3. The Nyquist Stability Criterion -- 6.3.1. The Argument Principle -- 6.3.2. Application of The Argument Principle to Control Design -- 6.4. Stability Margins -- 6.5. Bode's Gain -- Phase Relationship -- 6.6. Closed-Loop Frequency Response -- 6.7.Compensation -- 6.7.1. PD Compensation -- 6.7.2. Lead Compensation (W) -- 6.7.3. PI Compensation -- 6.7.4. Lag Compensation -- 6.7.5. PID Compensation -- 6.7.6. Design Considerations -- 6.7.7. Specifications in Terms of the Sensitivity Function -- 6.7.8. Limitations on Design in Terms of the Sensitivity Function -- 6.8. Time Delay -- 6.8.1. Time Delay via the Nyquist Diagram (W) -- 6.9. Alternative Presentation of Data. Note continued: 6.9.1. Nichols Chart -- 6.9.2. The Inverse Nyquist Diagram (W) -- 6.10. Historical Perspective -- Summary -- Review Questions -- Problems -- 7. State-Space Design -- A Perspective on State-Space Design -- Chapter Overview -- 7.1. Advantages of State-Space -- 7.2. System Description in State-Space -- 7.3. Block Diagrams and State-Space -- 7.4. Analysis of the State Equations -- 7.4.1. Block Diagrams and Canonical Forms -- 7.4.2. Dynamic Response from the State -- Equations -- 7.5. Control-Law Design for Full-State Feedback -- 7.5.1. Finding the Control Law -- 7.5.2. Introducing the Reference Input with Full-State Feedback -- 7.6. Selection of Pole Locations for Good Design -- 7.6.1. Dominant Second-Order Poles -- 7.6.2. Symmetric Root Locus (SRL) -- 7.6.3.Comments on the Methods -- 7.7. Estimator Design -- 7.7.1. Full-Order Estimators -- 7.7.2. Reduced-Order Estimators -- 7.7.3. Estimator Pole Selection -- 7.8.Compensator Design: Combined Control Law and Estimator (W). Note continued: 7.9. Introduction of the Reference Input with the Estimator (W) -- 7.9.1. General Structure for the Reference Input -- 7.9.2. Selecting the Gain -- 7.10. Integral Control and Robust Tracking -- 7.10.1. Integral Control -- 7.10.2. Robust Tracking Control: The Error-Space Approach -- 7.10.3. Model-Following Design -- 7.10.4. The Extended Estimator -- 7.11. Loop Transfer Recovery -- 7.12. Direct Design with Rational Transfer Functions -- 7.13. Design for Systems with Pure Time Delay -- 7.14. Solution of State Equations (W) -- 7.15. Historical Perspective -- Summary -- Review Questions -- Problems -- 8. Digital Control -- A Perspective on Digital Control -- Chapter Overview -- 8.1. Digitization -- 8.2. Dynamic Analysis of Discrete Systems -- 8.2.1.z-Transform -- 8.2.2.z-Transform Inversion -- 8.2.3. Relationship Between s and z -- 8.2.4. Final Value Theorem -- 8.3. Design Using Discrete Equivalents -- 8.3.1. Tustin's Method -- 8.3.2. Zero-Order Hold (ZOH) Method. Note continued: 8.3.3. Matched Pole-Zero (MPZ) Method -- 8.3.4. Modified Matched Pole -- Zero (MMPZ)> Method -- 8.3.5.Comparison of Digital Approximation Methods -- 8.3.6. Applicability Limits of the Discrete Equivalent Design Method -- 8.4. Hardware Characteristics -- 8.4.1. Analog-to-Digital (A/D) Converters -- 8.4.2. Digital-to-Analog Converters -- 8.4.3. Anti-Alias Prefilters -- 8.4.4. The Computer -- 8.5. Sample-Rate Selection -- 8.5.1. Tracking Effectiveness -- 8.5.2. Disturbance Rejection -- 8.5.3. Effect of Anti-Alias Prefilter -- 8.5.4. Asynchronous Sampling -- 8.6. Discrete Design -- 8.6.1. Analysis Tools -- 8.6.2. Feedback Properties -- 8.6.3. Discrete Design Example -- 8.6.4. Discrete Analysis of Designs -- 8.7. Discrete State-Space Design Methods (W) -- 8.8. Historical Perspective -- Summary -- Review Questions -- Problems -- 9. Nonlinear Systems -- A Perspective on Nonlinear Systems -- Chapter Overview -- 9.1. Introduction and Motivation: Why Study Nonlinear Systems? Note continued: 9.2. Analysis by Linearization -- 9.2.1. Linearization by Small-Signal Analysis -- 9.2.2. Linearization by Nonlinear Feedback -- 9.2.3. Linearization by Inverse Nonlinearity -- 9.3. Equivalent Gain Analysis Using the Root Locus -- 9.3.1. Integrator Antiwindup -- 9.4.

Equivalent Gain Analysis Using Frequency Response: Describing Functions -- 9.4.1. Stability Analysis Using Describing Functions -- 9.5. Analysis and Design Based on Stability -- 9.5.1. The Phase Plane -- 9.5.2. Lyapunov Stability Analysis -- 9.5.3. The Circle Criterion -- 9.6. Historical Perspective -- Summary -- Review Questions -- Problems -- 10. Control System Design: Principles and Case Studies -- A Perspective on Design Principles -- Chapter Overview -- 10.1. An Outline of Control Systems -- Design -- 10.2. Design of a Satellite's Attitude Control -- 10.3. Lateral and Longitudinal Control of a Boeing 747 -- 10.3.1. Yaw Damper -- 10.3.2. Altitude-Hold Autopilot. Note continued: 10.4. Control of the Fuel-Air Ratio in an Automotive Engine -- 10.5. Control of the Read/Write Head Assembly of a Hard Disk -- 10.6. Control of RTP Systems in Semiconductor Wafer Manufacturing -- 10.7. Chemotaxis or How E. Coli Swims Away from Trouble -- 10.8. Historical Perspective -- Summary -- Review Questions -- Problems -- Appendix A Laplace Transforms -- A.1. The L_ Laplace Transform -- A.1.1. Properties of Laplace Transforms -- A.1.2. Inverse Laplace Transform by Partial-Fraction Expansion -- A.1.3. The Initial Value Theorem -- A.1.4. Final Value Theorem -- Appendix B Solutions to the Review Questions -- Appendix C Matlab Commands.

Feedback Control of Dynamic Systems covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control-including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context and with historical background information. The authors also provide case studies with close integration of MATLAB throughout.

There are no comments on this title.

to post a comment.
Bataan Peninsula State University

  All rights Reserved
  Bataan Peninsula State University
  © 2024

Branches :

Abucay Campus: Bangkal, Abucay, Bataan, 2114
Bagac Campus: Bagumbayan, Bagac, Bataan 2107
Balanga Campus: Don Manuel Banzon Ave., Poblacion, City of Balanga, Bataan 2100
Dinalupihan Campus: San Ramon, Dinalupihan, Bataan, 2110
Orani Campus: Bayan, Orani, Bataan, 2112
Main Campus: Capitol Compound, Tenejero, City of Balanga, Bataan 2100

Powered by Koha